Testing Models of Binary Black Hole Mergers

B.S. Sathyaprakash, Cardiff University, UK Sixth LISA Symposium, Maryland, USA, June 21, 2006

Testing the Merger Dynamics

- From inspiral, merger and quasinormal modes
 - Test analytical models of merger and numerical relativity simulations
- Effective one-body (Buonanno and Damour)
 - 0.07% of total mass in GW
- Numerical relativity
 - 1-3% of total mass in GW
 - Phasing could be significantly different from EOB
- If we assume that numerical relativity is error free, test GR

Testing the Merger Dynamics

- From inspiral, merger and quasinormal modes
 - Test analytical models of merger and numerical relativity simulations
- Effective one-body (Buonanno and Damour)
 - 0.07% of total mass in GW
- Numerical relativity
 - 1-3% of total mass in GW
 - Phasing could be significantly different from EOB
- If we assume that numerical relativity is error free, test GR

Model independent measurement of parameters from inspiral

- At earlier times different post-Newtonian orders and different families agree with each other
- Once having detected a signal divide the data stretch into three pieces
 - Adiabatic region
 - The overlap between different families is better than 75%: apply a low-pass filter to select the relevant data segment
 - Non-linear regime
 - Ringdown region
 - Don't know how to do this yet: our work assumes that you somehow know how to do this.

How similar are the waveforms?

Measure the overlap of the waveforms weighted by the noise spectral density of the detector as a function of the upper-frequency cutoff

How similar are the waveforms?

Based on these evaluations assume that the adiabatic phase is valid until about

Overlap between different approximants more than 75%

R~10-15 M

Accurate measurements from inspirals Sources at fixed SNR=10 Sources at fixed distance of 300 Mpc

Fractional Errors in Mass and Spin for Advanced Ligo Black Hole at 10Mpc

Fractional Errors in Spin and Mass for LISA

Analytical Vs Numerical Relativity

LISA SNR in different phases of coalescence of black holes

Bias in the Estimation is large

- Bias in the estimation is pretty small in the inspiral phase compared to systematic errors
- On using standard PN approximation to fit an EOB the bias is found to be larger than the expected systematic errors
- We still have to explore what happens with waveforms from NR

Strong field tests of gravity Consistency of Parameters

Summary

- Use early "inspiral" epoch to reliably measure masses and spins
 - Small systematic errors compared to statistical errors
- From "ringdown" to extract a subset of parameters
 - Test for consistency between parameters from the inspiral and ringdown
- Fit the "merger" waveform from NR simulations
 - Does the fit agree with parameter estimation from the other two phases

Problems to think about

- There will be an inherent bias in the estimation of total mass before and after merger
 - The binary has lost about ~ few % of the total mass during merger and ringdown
 - The total mass determined from ringdown will be less than that from inspiral/merger